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STABILIZING AND DESTABILIZING EFFECTS IN NON-COf'iSERVATIVE SYSTEMS* 

N.V. BANICHUK, A.S. BRATUS and A.D. MYSHKIS 

Developing earlier results /l-6/, an investigation is presented of the 
equilibrium state of a linear autonomous non-conservative mechanical 
system perturbed by arbitrarily small dissipative forces. 
Perturbations due to dissipative forces are classical as defective or 
ideal according to whether they do or do not exceed a critical 
parameter. The structure of the dissipative operators is studied in 
both cases. Necessary conditions are established for perturbations 
effected by small forces linear in the system velocities to be ideal or 
defective. The structure of the matrices determining ideal 
perturbations is determined, and a formula is derived for the value of 
the critical stability parameter, called the perturbation defect. 
Examples are considered. 

1. Stat-t of the @lm. Suppose that an unperturbed mechanical system is described 

by a system of differential equations 

5" + A (p) x = 0 (1.1) 

where x=x(t) is a vector-valued function with n>2 components, and A is a real matrix 
which is an analytic function of a real parameter p. Then the squared frequencies and 
amplitudes of the normal modes 2 z ue'" are the eigenvalues and eigenvectors in the 
problem 

A (P) u = 0% (1.2) 

We will make a few additional assumptions. 

lo. A real number p,,exists such that the eigenvalues or2 (P) and ~2*(p) for P < PO 
are positive and simple; for every P >Po at least one of them is negative or not real; 
at p ==po system (1.2) has a double eigenvalue ora (Po) = a** (PO) = qa > 0 to which there 
corresponds a single eigenvector u,O, 

2O. All other eigenvalues os2(p), 04”(p), . . . . o,‘(p) of problem (1.2) for P < PO are 

real, simple and positive: 
012 = TjZ> 0 (j = 3, 4, . , .) n). 

Condition lo implies that 4 (PO) is not a symmetric matrix. 
We note that non-symmetric matrices typically possess a multiple eigenvalue 

corresponding to a single eigenvector - 
systems. It follows from conditions lo 

the phenomenon may be observed in real mechanical 
and 2' that when the parameter goes through the 

value P-PO, system (l-l), previously (non-asymptotically) stable, becomes unstable. 
Consider the perturbed system 

I" + EB (p) t’ + A (p) 5 = 0 (1.3) 

where B(p) is a real matrix whose elements are analytic functions of p, and s>P is a 
small parameter. The term sB(p)z' is necessary to allow for weak damping. The normal 
modes of system (1.3) satisfy the equation 

A (p) u + ieoB (p, u = C&L (1.4). 

For every e> G we define the critical value of p, denoted by p er to be the infimum of 
the set of p values for which at least one eigenvalue of problem (1.4) has negative 
imaginary part (if the set is empty we put ps = -). The term “critical” is used here in 
the sense that when P < Pe system (1.3) is stable (in any case, if all the W,e are 
simple) whereas it is.unstable for all sufficiently small values of the difference p -pE> 0, 
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The set of points (&ps) in the rrp plane is a curve separating the stable region of system 
(1.3) from its unstable ;egion.o We shall call this the critical curve. The real number p0 
figuring in conditions 1 and 2 is clearly the critical pdfor e = 0. 

Let pa denote the lower limit of the numbers pe as a---t +O. Its existence follows 
from our assumption that all the functions in question are analytic. 

It is well-known f7/ that an equilibrium stable to potential forces becomes 
asymptotically stable on applying dissipative forces with total dissipation. 
Non-conservative systems, however, do not possess this property. In such cases weak damping 
may have a destablizing effectll%/.We know thatfor the systemsconsideredin this paper&< pa. 

The number da (B) = p. - pd is known as the fdestablization) defect of the matrix B 
relative to the matrix A. If da(B) ='o we say that B is ideal relative to A, and the 
corresponding perturbations of system (1.1) are called ideal; matrices with dA W > 0 

will be called defective, and the corresponding perturbations will be called destabilizing 
perturbations. It has been shown that pd < PO /2, 4-61. The magnitude of the defect 
characterizes the destabilizing effect of the term eR(p)x*(t) on system (1.1) for small e> 0. 

2. The eqt&ion of the critica imw. The characteristic equation of system (1.4) is 
,(I is the identity matrix) 

A = det (A (p) + ieoB (p) - waZ) = 0 (2.1) 
We are interested in those values of e, p for which this equation has at least one real 

solution. Since all quantities occurring in Eq.(2.1), except ieo; are real, we can write 

A = P (wa, eo, p) + ieoQ (a*, eo, p) 

Here P 6% Y, PI (0 (2, Y. ~1) is a polynomial in s and y of total degree n (resp., n-l), of 
even degree in y, whose coefficient are analytic functions of p. If there exist a>0 
and p for which Eq.(2.1) has at least one real solution o,then, as o#O, these values of 
e, p make # (way 80, p) =O, Q (me, em, p) I= 0. Hence we can elliminate o, considering, say, the 
resultant of the left-hand sides of the equation /8, p.187/, considered as a polynomial in oz. 
It is important to observe that since P is the real part of a determinant depending on ie, P 
is a polynomial in the even powers of E. An analogous argument holds for Q. Finally, we 
obtain an equation of the form 

R (es, p) = 0 (2.2) 
where R (I/l P) is a polynomial in $j whose coefficients are analytic functions of p. The 
characteristic Eq.12.1) has a real solution on every curve defined by Eq.(2.2). It is clear 
from the definition of the critical value pS that R(eZ, pe) F 0. 

Let us call a perturbation of system (1.1) with terms eBx* as in (1.3) regular if, for 
some eo>O, the set of solutions of Eq.(2.2) corresponding to reai values of o is 
confined to the strip O<e<e, and for every solution of the equation H (0, POT = 0 
we have R,’ (0, p,,*),+ 0. 

Henceforth we shall assume that all perturbations are regular. On the critical curve 
we have R (0, ~4 = 0, R,‘(O, pa)+ 0 (by the definition of pd as the lower limit of pS as 
e+ + 0). By the implicit function theorem, if e. is sufficiently small the critical 
curve is defined in the above strip by an equation 

pa = pd + @h + e% + -.. 12.3) 

where the right-hand side is analytic. The numbers pa, pS, pa do not dependon e; in 
particular t pz = -R,’ (0, pd)IR,’ (0, pd), Along the critical curve the solutions of Eq.(2.1) 
satisfy the condition 

Im ai (8, p) > 0, i = 1, 2, . . .., 2n. (2.4) 

By a standard theorem, the roots of an algebraic equation are continuous functions of 
its coefficients. Hence the '$left" boundary of the stable region of system (1.3) lies 
entirely within one of the stable intervals of system 11.1). For every -critical curve, 
therefore, the value of pd lies within or on the boun'dary of some such interval. 

We also note that, by the implicit function theorem and the continuity theorem for 
roots of algebraic equations, the critical curve depends continuously on the elements of the 
matrices A and B. In this sense, therefore, it has the stability property. 

Eq.(2.2) defines not only the critical curve but the set of all curves on which the 
solution of (2.2) is real. The set of all such curves (D-curves) forms a "D-partition" of 
the strip 0< e< e. in the ep plane into regions, within each of which the degree of 
instability of system (1.3) (i.e., the number of values of WI such that Im wl< 0) remains 
constant: if this number is zero, the system is stable. Henceforth, however, we shall 
consider only the critical curve itself, which divides the plane into stable and unstable 
regions. 
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3. Set+8 eZpansiO?lS. Let pd = PO. It follows (from conditions lo. 2O and the regularity of 
the perturbations that the squares of the first two frequencies and the corresponding modes 
can be expanded in powers of ~"9 on the critical curve emanating from the point p. /9/: 

o,",, = 7r? + E'$Lrr + ap,2 + . . .( UIC == z&o + E”PUI1 + WI2 + . . . (3.1) 

Here uyo is the unique eigenvector of problem (1.2) corresponding at P = PO to a double 
eigenvalue 01' (PO) = oz2 (p,) = 71'. 

The remaining perturbed squared frequencies and modes can be expanded in series in 
powers of a: 

Ol,e = Z,'+ EIljl +&'~j* 3_. . . ( Uje = U~'f &Uj'+ E22(3' +. . .; 

j = 3,4,. , .,n (3.2) 

where u,O are eigenvectors of problem (1.2) corresponding at p = p,, to eigenvectors wjz(po) --= 
?,Z (j = 3, 4, .( n). We may assume without loss of generality that the eigenvectors are 
normalized so that 

(U,jE,~JO) = 1, j = 1,2,.. .,n (3.3) 

Here and below parentheses denote the scalar product of real vectors. 
From (3.1) and (3.2) we derive expansions for the perturbed frequencies: 

(3.4) 

a = I/?, j z 1;a = 1, j = 3, 4,. ..,n;zj = 1/&o> 0 

where the upper sign corresponds to one branch of the function and the lower to the other 
branch. The quantities PJk depend on the increments to the initial (unperturbed) 
eigenvalues WJ'.and have to be determined. 

Let us expand the coefficients of Eq.(1.4) in powers of p, using the representation 
(2.3) for Pd = PO. Collecting terms in like powers of E, we obtain equations for the number 
prl and the vectors urr, $2 : 

L,u,O = 0, Lou,’ = /WI0 
L,u,2 = cLIIU1’ + p&,0 e iz,B,u,O (3.5) 

(LO = A (P,) - ~,'z, A, = A (PC), B, = B (pd) 

For simple eigenvalues, 

LoUjo = 0, LoUj' = ~j~U~"~iTjB&jO; j = 3,4, . . .71 (3.6) 

Eqs.(3.5) and (3.6) were derived using the fact that in (2.3) pd = pox i.e., on the 
assumption that the perturbation corresponding to the matrix B is ideal. If pd<h i.e., 

the perturbation is defective, it follows from our assumptions that the only eigenvalues 
corresponding to p,J are simple. Hence the expansions of the required quantities in powers 
of e will indeed have the form (3.2), with coefficients as determined from (3.6), with p. 
replaced by pd. 

4. Necessary condition for an ideal perturbation. 

Proposition 1. If B realizes an ideal perturbation of system (1.1) as system (1.3), 
then 

(B,n,O, U,") = 0 (4.1) 

where ur" is an eigenvector of problem (1.2) corresponding to a double eigenvalue a," (PO) = 
OS9 (PO) = Q2 f 0, and vr" an eigenvector of the dual problem 

A,TQ = z 1 1 (A: = AT(po)) 2~' 0 (4.2) 

Proof. It follows from condition lo that 

(U,O, V,") = 0 

Indeed, this is shown by evaluating the scalar 
which relates the eigenvector U,O to its adjoint w, 
(A,w, v,“) = (w, A,=u,“). 

Now consider the second equation in (3.5). We 
Indeed, by (4.3) the Fredholm alternative holds 

matrix G(p,) = GO such that 
IL11 = ~!,Ic;o'L,~ 

(4.3) 

product of the equality A,w = T&LZ + ulOf 
with the vector u,O and using the equality 

shall show that it can be solved for ~~1. 
for this equation. There exists a real 

(4.4) 



6 is the inverse of the matrix 
(U, U*O) = 0. This condition is obeyed by 
(3.3). 

In view of (4.4), the condition 
gives 
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A, - r,V on the subsurface of vectors such that 
the vector ull thanks to the normalization condition 

for the solvability of the third equation of (3.5) 

PII* (Gou~“v 0~9 = f& (B,u,O, olo) (rl i 0) (4.5) 

The fact that the scalar products (G,u~~,I+~) and (&u,", uf) are real implies that Pll 
(the coefficient of ~'13 in the expansion of the squared frequency &) is real if and only 
if condition (4.1) holds. 

5. The asymptotic behavahur of the ctitica2 curue - idea2 perturbation. 

Let p' (e) = p0 + 9pa1 + e4P4’ + .., be some curve of type (2.3) in the plane, with 
arbitrary coefficients Pl’Y Pa’7 on which system (1.4) is stable. It f%ows from (4.5) 
and (4.1) that along this curve F11 = 09 and from (4.4) that u1' = 0. Let us assume now 
that (GOulO, ulO) p 0. The third equation in (3.5) is solvable, because the vector ~~0 is 
orthogonal to its right-hand member. Then 

u12 = p12G0~lo q ~@,B,u,~ (5.1) 

Proceeding as in the derivation of Eqs.(3.5), we obtain an equation for PIZ by 
collecting the coefficients of Ed: 

If (5.1) is taken into account, the solvability condition for this equation yields a 
quadratic equation for pLlz: 

Analysis of the solutions of this equation shows that the inequality Imo,,, > 0 
necessary for system (1.3) to be stable will hold along the curve p’(e) only if 
and T, >‘O (<0) when (G,u,O, 

T1> 0 (<0) 
v:)> 0 (<O); but If (G,u,O, ~10) > 0 (<O) and at the same time 

T*< 0 (>O), then for sufficiently small e0 we have Im u~,~< 0 in the strip 0< e < co. 
Consequently, at T, = 0 the curve P'(E) separates the strip into a region in which 
Im ml.e < 0 and a region in which Im o,,~> 0. The condition T, = 0 combined with 

(A,%", ~1~) # 0 is equivalent to the equality pzl = --rl* (B,G,B,u,~, v~~)/(A,‘u,~, ulo). 

We will now investigate the behaviour along the curve P’ (8) of the other (simple) 
frequencies o,,~ (j = 3, 4, . . ., n). To this end we use (3.6). The solvability condition for 
the second equation of (3.6) yields the relation FJ, (UJ'T VJ') = ztiT~ (BOUJ', Vj") (j = 3, 4, . . ., n). 
A necessary condition for the condition Im c,I,,~ > 0 to hold in a sufficiently small strip 

O<e<Eo is that 

(B0UJ07 uJ")(uJ07 UJ') > 0, j = 3, 4, . . ., n 

Summing up, we obtain 

Proposition 2. Assume that the necessary condition (4.1) for the perturbation to be 
ideal is satisfied; assume moreover that (A,blo, ulo)#O, (G,ulo, ulo)> O(<O) and in addition 

T, = (B,G,u,O, ~1') + (G,B,u,O, ~1~) > 0 (<0) (5.2) 

tBoujo> uj")(Ujo9 uj") > 0, j=3,4 ( . ..( n (5.31 

Then for sufficiently small E, the critical curve emanating from the point p0 and 
separating the asymptotic stability region of system (1.3) from its unstable region has the 
following representation in the strip O<E<eO: 

(5.4) 

It is worth noting that (5.4) remains formally valid even in the singular case (G,u,O, 

vlO) = 0 

6. The structure of matrices rediaing ideal perturbations. Let 1, aMi 1, be real 

numbers. Consider the set of matrices B, for which B,u,~ = 1 u 1 Io, BoTv10 = I,v,“. Eq. (3.1) 
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is then valid, since condition (4.3) holds. A sufficient condition for the critical curve 
from a point pO to exist in a sufficiently small strip 0 S:< F < PO is that inequalities 

(5.2), (5.4) be valid. We have T, -2 (Z1 2. I?) (G,u,O, u,O). Consequently, inequality (5.2) will 
hold if the sign of the sum 1, + 1, is properly chosen. The number of free prameters 
(elements) of B, is n" - 2n. Choosing them in a suitable manner, one can ensure the 
validity, of the remaining ?L - 2 inequalities (5.3) for t1> 2. 

In the case n = 2 conditions lo and 2' will be satisfied if k,k, + 2 = 0, k,& + 0. 

k, # k,, where k, = 2a,,l(a,, - all), k, = 2a,,l (a92 - u,r), where aij are the elements of 
the matrix A in,) (i, i = 1, 2). In this case 

h, -= Ir-, -= (u,~ + a.&i'2, ~10 == (k,, I), L’: = (k,, 1) 

As (u,", UrO) = 0, it follows from condition (4.1) that u1(', v10 are eigenvectors of 

B,, BoT # respectively. Hence we arrive at a system of equations for the elements of R,: 

b,,k, + b,, -= l,k,. b& i- b,, = l,k,, b,,k, + b,, = 1,. b& + b,, = 4 

The condition k,k, + 1 = 0 for this equation to be solvable is satisfied. The general 
solution is 

b,, = t, b,, -= k, (1, - t), b,, = k, (4 - t), b,, == 1, t I? - t 

where t, l,, 1, are real numbers. For inequality (5.2) to hold we must choose the sign of 

1, + 1% in accordance with the sign of the scalar product ~G,zL,~, ulo). 
TO construct Go, we need only solve the problem (A, - h)u = f subject to the condition 

(f, UrO) = 0, (u, UrO) = 0. Defining u = Cur', we see that C = (f, u~~)I(A~u~~, uIO). The equality 
u = G,f becomes u = ((f, u~)/(A~v~, uIo)) vr". Hence it follows that 

(G,u,', ul') == (1 + k,')(1 + kZ2)(a,, - a,,)l(a,, - aJ 

Thus, if as2 - a,, > 0 (<O), the sum 1, + 1, must be positive (negative). 
When t = (k,l, - k,l,)l(k, - k,) we obtain the general structure of symmetric matrices 

realizing an ideal perturbation. The asymptotic formula (5.4) is then 

Pe = PO - 
t,%L (Gow’, ~1”) 

(A&lo, 4”) 
62 + 0 (&2) (6.1) 

Note that previous publications /lO, ll/ described only a few special classes of 
matrices realizing ideal perturbations. 

Example. Let us consider one of the versions of Ziegler's problem of the action of a 
supporting force on a system of rods with two degrees of freedom /lZ/(see the figure). The 
equation of state can be reduced to the form (l.l), with the matrix A (P) defined as 
follows: 

At Pa -2 r(7 - Z/z)/2 the eigenvalue (1.2) is double: ?IZ oll?= 
Oza = l/j (0~2 = 2&d%), and corresponding to it we have one eigenvector 
U,O = (3 - al/n, 1). The eigenvector of the adjoint problem (4.2) is 

L.,O= (-(a+ Z/z). I), i.e., k, = -(3 + 2~'?), k, == 3 -21/z. To simplify 
the computations we take r=t. The structure of the ideal symmetric 

I 

I m 
perturbations defined above leads to matrices of the form 

B,, = 
II 

b- 11 - 12 

Ii 
brt Y= 3 (II 1_ I?) t 2 rr?- (II - I,) 

P 
l,-12 h, ’ 

Since (A OQllo, u,O) = -4@ and (G,u,O, ~~'9 = 1/gi the number 
be positive. The asymptotic critical curve given by (6.1) is 

,rlF = (7 - ?(/2)/2 + 1,1//S + 0 (9) 

1, i- 1, must 

7. The necessary condition for defective perturbations. Computatation of the defect. 

Proposition 3. Let B be a matrix realizing a defective perturbation of system (1.1). 
Then necessarily 

@,o, r',O)(BduiO, u,") ::. 0, i = 1, 2, . . . ?L (7.1) 

where uio and uio are solutions of the eigenvalue problem 

A&' = <~I,%,", &rQ' = D~*L~~~, Ad = A (pd), Bcj = B(pd 
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The proof of Proposition 3 relies on the arguments already invoked to prove inequality 
(5.3) in Proposition 2, with p. replaced by pd. 

we also assume that for all points Pd < PO such that inequality (7.1) holds, it is 
true that (@, vi") # 0. The case (~~0, ~~0) = 0 leads to the previously considered condition 

(B&‘, $J) = 0. 

CoroZZary 1. Let p’ (&) = pdl -,- &‘p1’ + . . . be some curve of type (2.3) in the 
plane, emanating from a point pd' on the p-axis. If the strict inequality (7.1) $he 
inequality inverse to (7.1)) holds at p = pdl, then for sufficiently small e, system (1.3) 
is asymptotically stable (unstable) in the strip 0< e< ~~ along the curve P’ (4. 

Now, considering the matrix B(p) as given, let QB(P) denote the set of all p such 
that 

OS (P) = {P : P < PO, (u (P), ” (P)) iB (P) u (P), u (P)) > 0) (7.2) 

where u (P) and u(p) are eigenvectors of the problems 

A (p)u (p) = 0’ (P) 1~ (P), AT (P) v (P) = 0’ (P) ” (P) (7.3) 

(a (PI? v (P)) f 0 

Let p* (B) be the supremum of all pE QS (p). If Qe (p) is empty we define p* (B) = 
-00. 

Proposition 4. The defect of the matrix B(p) is given by 

PA= Po- P* (4 (Pd = P* @)I 

Proof. It follows from the definition of QB (P) e equalities (7.2) and (7.3) and the 
previous result that PdEQa (p). The point Pd cannot be an isolated point of Qg (P). 
Indeed, otherwise condition (7.1) would reduce to an equality, while the reverse inequality 
would hold in a sufficiently small neighbourhood on either side of pd. But then it would 
follow from Corollary 1 that the curve (2.3) does not separate the stable from the unstable 
region, contrary to its definition. 

By the definition of p*(B), we have pd< p*(B). Let Pd < P’ (B) and 6 = p’ (B) - pd > 0. 
Since pd is not an isolated point of Qs (p), there exists a point pd'= Qa (p), pd<pd’<p* (B), 

at which inequality (7.1) holds strictly. By Corollary 1, for sufficiently small e0 system 
(1.3) is asymptotically stable in the strip O<~<E@ along the curve pt= pdl-l- eapnl+ . . . . 
But since P,’ > Pe ( Pg was defined in (2.3)) in a fairly narrow strip 0 <e < 80, this 
contradicts the definition of the critical curve pe. 

Example. Consider the problem of the action of a controlling force on a rod system. 
Following Ziegler /l/, we assume that the hinges possess given viscoelastic properties. 
This means that we are considering system (1.1) with the matrix A (P) defined in (6.2) 
together with terms in eBr' (t) , where B = 11 bil 11, b,, = ‘In, b,, = -1, b,, = ---‘I,, b,, = 2. It was shown in 
Sect.6 that p0 = 2.0857r (r = c/d). It can be verified directly that condition (4.1) fails to 
hold, and therefore the perturbation realized by B is defective. 

Computations using the Routh-Hurwitz criterion give a value of pd = 1.4642, Let us 
calculate this number using the result of Proposition 4. To simplify matters, we put r= 1. 
The eigenvectors of problems (7.3) are 

ui = (1, Zi/(2 - P)h vi = (is z,/(5 - P)) 

zi = hi’ (P) - P + 3, i = 192 (P =#= 2, P + 5) 

Note that (Ui (p), vi(p))>0 for p < 2. With these values of p, a sufficient condition for 
inequalities (7.2) to hold is the validity of at least one of the two pairs of inequalities 

24 -7p > J'?&T 41/i&, 24 -7~ 6$ (l/Fa-!- 4)/&), where D, = 4pa - 28~ + 41, D,= pa+ 56p - 80. The 
domain of definition of these inequalities (accurate to four decimal places) is p < -37.3938, 
1.3938 \< p < 2.0857. The second of the first pair of inequalities (with the plus sign chosen) 
does not hold for any p in the domain of definition. The supremum of the solutions of the 
remaining inequalities is 1.4642. In the region 2<p<2.0857 we have (ui (p), Vi(p))< 0 (i = I, 2) 
and inequalities (7.2) do not hold for such values of p. In sum, pd = p*(B)= 1.4042. agreeing 
with the previously known value. 

Note that in the case n=2 one can derive general formulae, based on the elements 
of the matrices A and B. Indeed, repeating the arguments of Sect.2 we obtain 

R (ez, p) = (a a 11 22 - %%,)(h, + w - (a,,& + %A - %,~,I - (7.4) 

@,,)U%A, + %A -t a;,& + %&za) + (b,, + b,,) (D,,& - W,,) c21 

Im (%),, = -& ((h, -t &J + ~A-“x) (P < ~0) (7.5) 
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h, and h, are the eigenvalues of the unperturbed problem (1.2) at pd< PO. The upper sign 
in formula (7.5) pertains to h,, and the lower one .to lL1. By (7.5), if 

I 6 I < (b,, + 4,) A”, (7.8) 

for P<P0, then for all (6, P) (E > 0) sufficiently close to (0,p) system (1.3) is 
asymptotically stable, but if (7.6) is reversed, then the system is unstable. 

Let us assume that the set of solutions of the equations R(E',P) = 0 in some strip 
O<E<EO is bounded. Then, if inequality (7.6) is true for all P < POT the 
perturbation in question is ideal; but if the reverse inequality holds for some P < PO 
then pd is the supremum of those p values forowhich (7.6) is true (if there are no such 
values, then pd = -m). Note that condition 1 of Sect.1 implies the following relations 

A> 0, all 4 az2 > 0, allaa - a12azl > 0 (P < PO) 
A = 0, a,, # as1 (P = PO) (7.7) 

A<0 (P > PO) 

Since the right-hand side of (7.6) vanishes at p = po, it follows that if 

6(,=,#0 (7.8) 

the perturbation is defective. Thus, 
situation when condition lo is satisfied. 

defective perturbations are actually the typical 
This can also be derived from condition (4.1). 

It is not hard to show that for any matrix A satisfying conditions (7.7) one can find 
a symmetric positive-definite matrix B such that inequality (7.8) is true. In other words, 
mechanical systems of the type considered here may be destabilized by arbitrarily small 
dissipative forces with total dissipation. It should also be noted that along any critical 
curve, necessarily. 

sgn (err&, + a,& - a&, - a&,,) = sgn (b,, + b,,) 

Thus, in the above example, condition (7.6) becomes 1 14p - 41 1 < 7 (4p” - 28p + 41)‘k 

This inequality is true only provided that p <41/28; thus Ed = 41128 = 1.4643. The same 
fOllOWS from (7.4): R(ea, p)= 0 when pd = 41/2$. 
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